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ABSTRACT

 Electronic devices have been utilized in a wide range of applications, such as 

computing, data storage, sensors, lightings, energy production, and energy storage; they 

are building blocks of computer processors, solid state data storage devices, image sensors 

in digital cameras, LEDs, and solar cells, etc. These electronic devices operate based on 

properties of semiconductors, which are their essential components. Not only being 

fundamental components of electronic devices, semiconductors can be crucial materials 

for other applications, such as catalysts, battery electrodes, etc. One of the primary current 

quest on semiconductor research is to develop semiconducting materials that are more 

compact and more efficient than existing materials. Science and technology for nanoscale 

materials has been applied to develop nanoscale semiconducting materials to complete the 

quest. One of the promising nanoscale semiconducting materials is semiconductor 

nanowire; its geometry and properties allow for several advantages. One of the challenges 

preventing semiconductor nanowire from practical usage is the insufficient technology to 

control its properties. This dissertation presents novel practical approaches to control 

magnetic and electronic properties of semiconductor nanowires via doping. First, 

preparation method of Mn(II) doped CdSe nanowires via nanocrystal diffusion doping 

mechanism and the effect of manganese doping as well as ligand exchange on magnetic 

property of Mn(II) doped CdSe nanowires are discussed. Moreover, indium doping on 

CdSe nanowires via sequential nanocrystal diffusion doping and cation exchange and its 

effect on electronic property of CdSe nanowires are demonstrated. Finally, an effort to use 
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photochemical doping method to control electronic property of CdSe nanowires is 

presented here.
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CHAPTER 1 

INTRODUCTION

Semiconductors were understood in the last century. Since then, a tremendous 

amount of research has been conducted in an effort to better understand and control their 

properties and invent semiconductor devices resulting in great benefits to humankind. One 

of the primary current quest on semiconductor research is to develop semiconducting 

materials that are more compact and more efficient than existing materials. Science and 

technology for nanoscale materials has been applied to develop nanoscale semiconducting 

materials to complete the quest. One of the promising nanoscale semiconducting materials 

is semiconductor nanowire; its geometry and properties allow for several advantages. One 

of the challenges preventing semiconductor nanowire from practical usage is the 

insufficient technology to control its properties. This dissertation presents practical 

approaches to control magnetic and electronic properties of semiconductor nanowire via 

doping.  

This chapter will provide general context and the significance of the work presented 

in this dissertation. The first section will discuss about the significance, properties, and 

fundamental physics of semiconductor. The following section will explain the 

characteristic of semiconductor nanowires and properties of semiconductor nanowires and 

will highlight the potential applications of semiconductor nanowires. Finally, the 

significance of doping process on semiconductor and the challenge of doping process on 

semiconductor nanowire will be discussed.   
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1.1 SEMICONDUCTOR AND ITS SIGNIFICANCE 

Development of electronic devices enabled modern technology. Electronic devices 

have been utilized in a wide range of applications, such as computing, data storage, sensors, 

lightings, energy production, and energy storage; they are building blocks of computer 

processors, solid state data storage devices, image sensors in digital cameras, LEDs, and 

solar cells, etc. Prominent examples of electronic devices are diodes and transistors. These 

electronic devices operate based on properties of semiconductors, which are their essential 

components. Not only being fundamental components of electronic devices, 

semiconductors are crucial materials for other applications, such as catalysts, battery 

electrodes, etc.  Semiconductors have electrical conductivity in the range between those of 

metal and insulator, and they are sensitive to heat, light, and external electric field. This 

fundamental property of semiconductors leads it to be useful materials in many 

applications, which can be visualized by energy band diagrams of a semiconductor, 

electronically allowed states of a semiconductor as a function of energy, illustrated in 

Figure 1.1. An inorganic semiconductor are formed by group of atoms connected through 

covalence bonds. This connection forms two bands of electronically allowed states: the 

upper band is called conduction band and the lower state is called valence band. These 

bands are divided by the forbidden gap, so called band gap. At absolute zero, all electrons 

in a semiconductor reside in the lowest energy state. Therefore, the valence band are 

completely filled with electrons while the conduction are empty, thus all electrons are 

localized in the valence band allowing no current to flow through the semiconductor. The 

electrons in the valence band can be excited by heat or energy from photons (illumination) 

and move to the conduction band. The thermal excitation or the illumination generates 
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delocalized electrons in the conduction band and delocalized empty states in the valance 

band called holes. The delocalized electrons and holes induce the flow of current through 

the semiconductor, and thus increase electrical conductivity of the semiconductor. 

1.2 SEMICONDUCTOR NANOWIRES 

Traditional electronic devices were made of bulk semiconductor. Due to the 

improvement of nanotechnology, size of the electronic devices is reduced while the 

efficiency of electronic devices is improved. Modern electronic devices are primarily made 

of thin film semiconductor, which allows for compact size and high efficiency. Thin film 

morphology has a confined thickness in nanometer to micrometer range. To obtain more 

compact electronic devices, more dimensions of a semiconducting material need to be 

confined. Two-dimensional confinement to nanometer scale results in nanowire geometry. 

A semiconductor nanowire is a quasi-cylindrical shape semiconducting material with 

diameter in nanoscale and length ranging from micron to millimeters. This geometry allows 

for unique characteristics, which has potential for many applications. First, the high aspect 

ratio geometry allows for being integrated into a micro-/nanoscale electronic device as well 

as superior charge separation and light absorption properties as compared to bulk 

semiconductors. Moreover, the large surface-to-volume ratio of nanowire increases the 

sensitivity to surface interaction as well as chemical reactivity. Additionally, the radial 

dimension of the nanowire is in or below the range of many characteristic length scales, 

such as Bohr radius, sub-bandgap wavelength, and exciton diffusion length, and magnetic 

domain. These unique characteristics cause semiconductor nanowires to have different 

properties form their bulk counterparts, and lead semiconductor nanowires as a promising 
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material for many applications, such as micro-/nanoscale electronic devices, nanosensors, 

nanophotonics, themoelectrics, photovoltaics, catalysis, and battery.1,2  

1.3 SEMICONDUCTOR DOPING 

Electronic property of a semiconductor has to be tuned before being used as a 

component in electronic devices. This property tuning process is done by adding a small 

quantity of impurity atoms into a pure or intrinsic semiconductor crystal, so called doping. 

The electronic property can be controlled by type and quantity of the impurity atoms, so 

called dopants. Higher concentration of a dopant in a semiconductor crystal leads to higher 

charge carrier concentration in the semiconductor, increasing conductivity of the 

semiconductor. As mention above, there are two type of charge carriers: delocalized 

electrons, which are negative charge carriers, and delocalized holes, which are positive 

charge carriers. Adding dopants which introduces delocalized electrons to a semiconductor 

creates an n-type semiconductor while adding dopants which introduce delocalized holes 

to a semiconductor creates a p-type semiconductor. This can also be explained by energy 

band diagrams of intrinsic and doped semiconductors (Figure 1.2). Typically, n-type 

doping introduces filled electronic states narrowly below the conduction band of a 

semiconductor while p-type doping introduces empty electronic states narrowly above the 

valence band of a semiconductor. For example, adding phosphorus atoms to silicon crystal 

generates n-type semiconductor while adding boron atoms to silicon crystal generates p-

type semiconductor. Electronic devices, such as diodes, bipolar junction transistor, and 

field-effect transistors, are fabricated by assembling n-type semiconductor(s) and p-type 

semiconductor(s) into specific configurations as shown in Figure 1.3.  
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Beside electronic property, doping can also control magnetic properties of 

semiconductor. This is done by introducing magnetic impurity atoms, such as manganese 

(Mn), iron (Fe), and cobalt (Co), into a semiconductor crystal. Introducing low 

concentration of the magnetic impurities into a semiconductor crystal generates dilute 

magnetic semiconductor, which has a promising candidate for spintronic application. 

Doping in bulk semiconductors can be accomplished by several techniques; the 

prevalent techniques are diffusion doping and ion implantation. Diffusion doping process 

is done by coating a layer of impurity atoms, e.g. impurity atoms dispersed in polymeric 

medium, on a surface of a semiconductor crystals. Then heat is used to diffuse the impurity 

atoms from the surface to the semiconductor parent crystal. In ion implantation process, a 

semiconducting parent crystal is bombarded with dopant ions embedding the dopants to 

the atomic layers on the surface of the parent crystal. Then heat governs the diffusion of 

the dopant from the surface through the parent crystal. Although these well-established 

methods are suitable for bulk semiconductors, the application of these methods to 

semiconductor nanostructures, especially colloidal nanostructures, is limited.  

Although doping is a necessary step to promote semiconductor nanowires for 

practical use, it is yet a great challenge in the field. There are some efforts to dope 

semiconductor nanowires with impurity atoms. Doping during growth has been 

demonstrated in colloidal and free-standing nanowires.3–7 In this technique, a dopant 

precursor is added into a nanowire growth medium during the growth process. More details 

on nanowire growth will be discussed in the next chapter. The challenge of this approach 

is that the doping process is governed by solubility of dopants in nanowire growth catalyst, 

which are metal nanoparticle. This limits type and quantity of dopants that can be 
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introduced into semiconductor crystal. Alternative doping approaches will certainly be 

useful to engineer properties of semiconductor nanowire to suit its potential applications   

This dissertation will demonstrate a potential of doping approaches via 

unconventional mechanisms, which have been demonstrated to successfully introduce 

charge carriers and magnetic dopants into a structure with high surface-to-volume ratio e.g. 

colloidal quantum dots. Semiconductor nanowires also possess large surface-to-volume 

ratio, and thus they are suitable candidates for these approaches. 

1.4 OVERVIEW OF THE THESIS 

This dissertation will demonstrate three approaches to manipulate magnetic and 

electronic properties of semiconductor nanowires via doping. Chapter 2 will provide some 

background on nanowire growth techniques and focus on colloidal cadmium selenide 

(CdSe) nanowire growth via solution-liquid-solid growth mechanism of semiconductor 

nanowire Moreover, detailed experimental method used to synthesize bismuth 

nanoparticles used for colloidal CdSe nanowire growth and colloidal CdSe nanowires will 

be discussed in this chapter. These CdSe nanowires were used as starting materials to 

demonstrate doping approaches in this dissertation. 

The next three chapters will present three semiconductor nanowire doping mechanisms, 

including nanocrystal diffusion doping, sequential nanocrystal diffusion doping and cation 

exchange, and photochemical doping, by discussing methods used to prepared doped 

semiconductor nanowires via those mechanisms as well as the effect of the doping on 

magnetic and electronic properties of the doped nanowires. The doping mechanisms 

demonstrated in this thesis is illustrated in Figure 1.4. Chapter 3 will discuss about 

preparation of Mn(II) doped CdSe nanowire via diffusion doping as an example to 
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demonstrate the advantage of doping in controlling magnetic property of semiconductor 

nanowires. Chapter 4 will discuss about using sequential diffusion doping and cation 

exchange to prepare In(III) doped CdSe nanowires from CdSe nanowire to demonstrate the 

benefit of doping on controlling electronic property of semiconductor nanowires. The final 

chapter will discuss a potential of photochemical doping mechanism on semiconductor 

nanowire doping.  

 

 

 

Figure 1.1 Energy band diagrams of a semiconductor at absolute zero (left) and at elevated 

temperature or under illumination (right). Blue circles represent electrons and white circles 

represent holes. At absolute zero (left), the valence band is filled with localized electrons 

and the conduction band is empty. Excited by heat or light (right), electrons from the 

valence band move to conduction band and leave free holes in the valence band. The 

conduction band and the valence band is separated by a band gap where there is no allowed 

electronic states. The band gap energy, Eg, is specified by the highest energy level in the 

valence band (Ev) and the lowest energy level in the conduction band (Ec), Eg = Ec -Ev.    
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Figure 1.2 Energy diagrams of (A) an intrinsic semiconductor, (B) an n-type 

semiconductor, and (C) a p-type semiconductor. 

 

 

 

Figure 1.3 Configurations of a diode, a bipolar junction transistor, and a field-effect 

transistor. Blue blocks represent n-type semiconductor, green blocks represent p-type 

semiconductor, and black lines represent connections to electronic circuits. 
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Figure 1.4 Schematic of semiconductor nanowire doping approaches presented in this 

thesis. 
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CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION OF COLLOIDAL CDSE 

NANOWIRES VIA SOLUTION-LIQUID-SOLID MECHANISM

The advance in nanotechnology improves the quality of the electronic devices. In 

the past decades, thin film semiconductor was invented and has been employed as a main 

component in modern electronic devices. By confining one dimension of bulk structure to 

micro- or nanoscale, thin film structure is achieved. As compared to their bulk counterparts, 

thin film semiconductors are more compact and more efficient. The quest to look for more 

compact and more efficient semiconducting materials is still progressing to improve the 

quality of existing technology and invent new technology. By confining two dimensions 

of bulk semiconductor to nanometer scale, semiconductor nanowire can be realized. Not 

only more compact size as compare to bulk semiconductor, semiconductor nanowire also 

has unique electronic, optical, mechanic, thermal, chemical, and magnetic properties 

leading it to be a promising candidate for many applications, such as such as micro-

/nanoscale electronic devices, nanosensors, nanophotonics, themoelectrics, photovoltaics, 

catalysis, and battery. Due to its great potential for many applications, synthesis and 

properties of semiconductor nanowire has been extensively in the past decades.  

2.1 SEMICONDUCTOR NANOWIRE GROWTH 

Semiconductor nanowire is a cylindrical shape semiconductor with radial 

dimension in nanometer scale and length in the range of microns to millimeters. This quasi-

one-dimensional structure can be achieved by etching bulk semiconductor, so called top-
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down method, or by assembling its subcomponents, so called bottom-up method.8 Top-

down approach requires high-precision etching process, usually assisted by lithography 

techniques. Therefore, morphology of semiconductor nanowires produced from this 

approach is determined by lithography pattern, and thus possibility of the morphology is 

limited by resolution of the lithography technique used. This approach allows 

semiconductor nanowires for being integrated into electronic device with high precision. 

However, the yield of semiconductor nanowires produced from this approach limited as 

compared to that from the other approach. Bottom-up approach be achieved via several 

methods. These methods usually require either a template or a metal nanoparticle catalyst. 

In terms of yield, metal nanoparticle assisted semiconductor nanowire growth method is 

superior. This method can be done in vapor phase or in solution phase.2,8,9 The method 

carried out in vapor phase yields free standing semiconductor nanowire while that carried 

out in solution phase yields colloidal semiconductor nanowires. Among those 

semiconductor nanowire synthetic methods, solution based method via solution-liquid-

solid (SLS) mechanism is most suitable to synthesize semiconductor as a starting material 

for doping reactions demonstrated in this dissertation because this method yields colloidal 

semiconductor nanowires with sufficient amount suitable for the doping reactions 

presented in this dissertation.  

2.2 CDSE SYNTHESIS VIA SOLUTION-LIQUID-SOLID (SLS) MECHANISM 

There are numerous types of semiconductor based on elemental compositions 

which serve different purposes in semiconductor applications. Colloidal CdSe nanowire is 

selected as a starting material in doping reactions demonstrated in this thesis for several 

reasons. First, CdSe is a direct bandgap semiconductor emitting fluorescence in visible 
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range. This II-VI semiconductor also has excellent optical properties. Additionally, 

colloidal chemistry of CdSe nanocrystals is well-established. Finally, doping methods 

presented in this dissertation are adapted from doping methods successfully used to prepare 

doped CdSe colloidal quantum dots.10–12 This chapter will primarily focus on synthesis and 

characterization of colloidal CdSe nanowire which was used as a starting material for 

doping reactions that will be discussed in the next chapters. 

Solution phase semiconductor nanowire synthesis via SLS mechanism is a bottom-

up approach, through which a semiconductor nanowire is assembled from its 

subcomponents. This mechanism contains many steps. First, the subcomponents dissolve 

in nanoscale metal droplet forming a nanoscale alloy droplet. The continuous supply of the 

subcomponents to the alloy droplet supersaturates the alloy inducing the crystallization of 

the subcomponents. The crystal growth continue in one direction yielding a semiconductor 

nanowire. Because the nanowire crystal is crystalized from the nanoscale alloy droplet, the 

size of the metal nanoparticle that forms the droplet determines the radial dimension of a 

nanowire. The fact that the subcomponents from a solution becomes liquid, and then solid 

is the origin of the name of this mechanism, SLS. 

Many research studies successfully synthesized CdSe nanowires via this 

mechanism. This mechanism allows CdSe nanowires to be synthesized as colloidal CdSe 

nanowires as well as CdSe nanowires attached to a substrate or electrodes.9,13–18 The 

Colloidal CdSe nanowires are capped by organic ligands, which provide stability in 

solution and prevent aggregation of the nanowires. In general, CdSe nanowire synthesis 

reaction media consist of a cadmium precursor, a selenium precursor, bismuth 

nanoparticles, surfactants, and a high boiling point solvent. The cadmium and selenium 
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precursors are cadmium and selenium bonded to long-chain organic moieties. The ratio of 

the cadmium to the selenium precursors,13,19 the surfactants,20,21 and the solvent as well as 

the size of the bismuth nanoparticles determine morphology of CdSe nanowires.9,13,19 In a 

CdSe nanowire growth reaction, the precursors decompose and then supply cadmium and 

selenium to bismuth nanoparticles at elevated temperature. Bismuth nanoparticles are 

usually used as catalysts in semiconductor nanowire synthesis via SLS mechanism due to 

its relatively low melting point as compared to other types of metal nanoparticles, such as 

gold nanoparticles. The low melting point property is suitable for solution phase synthesis 

because the synthetic temperature cannot go beyond boiling point of the solvent used in a 

nanowire growth reaction. Bismuth nanoparticles can be synthesized by various methods. 

Annealing of bismuth thin film16,18,20 and electrodeposition22 reported to yield bismuth 

nanoparticle attached on substrates. There were many research studies reported on 

synthesis of polymeric ligand capped bismuth nanoparticles, and used them for 

semiconductor nanowire synthesis.13,14,20,23,24 However, the production of the polymer used 

for the polymeric ligand capped bismuth nanoparticle synthesis was discontinued. Yarema 

and coworkers reported on controlled synthesis of oleate capped bismuth nanoparticle.25 

This method does not require polymeric ligand and yields highly monodisperse colloidal 

bismuth nanoparticles and thus was modified and employed to synthesize colloidal bismuth 

nanoparticles used for CdSe synthesis illustrated in this dissertation.  

This chapter will illustrate solution phase bismuth nanoparticles synthesis and 

colloidal CdSe nanowire synthesis via SLS mechanism. 
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2.3 EXPERIMENTAL SECTION 

Chemicals. Lithium bis(trimethylsilyl)amide (Li[N(SiMe3)2], 99.0 %) and 

selenium shot (Se, 99.999%) were obtained from Alfa Aesar. 1-Hexadecylamine (HDA, 

90%) and tri-n-octylphosphine oxide (TOPO, 99%) were obtained from ACROS 

ORGANICS. Cadmium oxide (CdO, 99.999%) and tri-n-octylphosphine (TOP, 97%) were 

obtained from STREM CHEMICALS. Oleic acid (OA, 99%) was obtained from 

BEANTOWN CHEMICAL. Bismuth(III) chloride (BiCl3, 99.99%), and 

tetrachloroethylene (TCE, 99%)  were obtained from Aldrich. Acetonitrile (≥99.5%) and 

hexane (95%) were obtained from Sigma-Aldrich. Toluene (99.9%) was obtained from 

Fisher Scientific. Ethyl alcohol was (200 proof ethanol) was obtained from Decon 

Laboratories. Diethyl ether and Tetrahydrofuran (THF) were dried over activated alumina. 

Synthesis of Bi[N(SiMe3)2]3 as a Bismuth Precursor. The Bi[N(SiMe3)2]3 was 

prepared using a modified literature method.25,26 All steps of synthesis and purification 

were carried under an air-free condition with anhydrous solvent. 1.000 g (5.976 mmol) of 

Li[N(SiMe3)2] and 12 mL of diethyl ether were mixed in a septum-capped 50 mL round 

bottom flask in a nitrogen atmosphere glovebox. Separately, in a nitrogen atmosphere 

glovebox, 0.6282g (1.992 mmol) of BiCl3, 12 mL of diethyl ether, and 2.4 mL of THF 

were mixed before adding to a septum-capped addition funnel. The funnel and the round 

bottom flask were assembled in a nitrogen atmosphere glovebox. The solution of 

Li[N(SiMe3)2] was stirred and cooled in an ice bath. The solution of BiCl3 was added 

dropwise to the solution of Li[N(SiMe3)2] for 2 hours. The reaction mixture, which became 

light yellow turbid, was centrifuged. The supernatant was then filtered using PTFE syringe 

filter with 0.45 μm pore size. The filtered solution was dried under vacuum to give a light 
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yellow solid. To dissolve the solid, 10 mL of hexane was added to give a yellow solution. 

The solution was filtered using PTFE syringe filter with 0.45 μm pore size and dried under 

vacuum to yield 165 mg of a yellow solid. Bi[N(SiMe3)2]3 is a light sensitive compound, 

so the product was stored in a freezer inside the glovebox. This product was used as a 

bismuth precursor without characterizations.      

Bi NP growth. Bismuth nanoparticles were prepared using a modified literature 

method.25 Briefly, 25 g of HDA was added into a septum-capped 100 mL round bottom 

flask and heated at 100⁰C under vacuum for 30 min in order to dry the HDA. The HDA 

was then kept at 100 ⁰C under nitrogen atmosphere. Separately, in a nitrogen atmosphere 

glovebox, 1.2 mL of toluene was added into 171 mg (0.248 mmol) of Bi[N(SiMe3)2]3 to 

give a yellow solution, and 1.2 mL of toluene was added into 207 mg (1.24 mmol) of 

Li[N(SiMe3)2] to give a brown solution. These solutions were then mixed, and injected into 

the flask containing the HDA at 100 ⁰C. The reaction mixture turned to brown solution 

instantly after the injection. The reaction mixture was kept at 100 ⁰C for 15 sec before 

cooling down to room temperature. At 80 ⁰C, 20 mL of toluene was injected into the 

reaction mixture. At room temperature, ethanol was added to the reaction mixture (1:1 

(v/v)). The reaction mixture was mixed well before being centrifuged at 6000 g to separate 

Bi nanoparticles. The precipitate was redispersed in TCE; sonication was used to assist the 

dissolution of the solid. 200 μL of OA was added to the solution to replace HDA ligand 

with OA. Ethanol was added to the solution (1:1 (v/v)). The mixture was centrifuged to 

precipitate Bi nanoparticles. The Bi nanoparticles was redispersed in anhydrous toluene, 

and then stored in a nitrogen atmosphere glovebox for further use. The Bi nanoparticles 

were characterized by TEM.  
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CdSe nanowire growth. CdSe nanowires were prepared using a modified 

literature method.19 Briefly, in a nitrogen atmosphere glovebox, 1.92 M TOPSe was 

prepared by adding 11.4 mL of TOP to 1.727g of selenium pellets. The mixture was then 

stirred at room temperature until the selenium pellets are completely dissolved. Separately, 

60 mg (0.47 mmol) of CdO, 530 μL of OA, and 15 g of TOPO were loaded in a septum-

capped 100 mL round bottom flask, and then heated at 110⁰C under vacuum for 50 min to 

dry the mixture. The reaction mixture was then kept under nitrogen atmosphere before 

increasing the reaction temperature to 340 ⁰C, at which the reaction mixture became clear. 

The reaction temperature was then reduced to 250 ⁰C, at which the mixture of 2.935 mL of 

TOPSe (1.92 M) and 0.180 mL of Bi NP solution in anhydrous toluene (4 mg/mL) was 

injected into the reaction mixture. The reaction mixture turned to dark brown immediately 

after the injection. The reaction temperature was kept at 250 ⁰C for 10 min before cooling 

the reaction mixture down. At 80⁰C, 15 mL of toluene was injected into the reaction 

mixture to prevent solidification of TOPO. The reaction mixture was then precipitate by 

mixing with acetonitrile before centrifuge. The precipitate was purified by 

precipitation/redissolution technique with (1:1 (v/v)) toluene/acetonitrile three times. The 

nanowires were suspended in toluene for further use. 

Physical Characterization. Transmission electron microscope (TEM) samples 

were prepared by dropping a dilute solution of colloidal suspension of bismuth 

nanoparticles in toluene on a 400 mesh copper grid (Ted Pella, Inc.) or that of CdSe 

nanowires in toluene on 200 mesh copper grid with a lacey carbon film (Ted Pella, Inc.) 

and allowing this substrate to dry under vacuum. TEM images were obtained on a Hitachi 

HT7800 TEM, 100 kV microscope. Bismuth nanoparticles and CdSe nanowires sizes and 
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size distributions reported were determined by analysis of the images of 207 and 104 

individual nanocrystals, respectively. Energy-dispersive X-ray spectroscopy (EDS) spectra 

were obtained using a Hitachi HT7800 TEM equipped silicon drift detector (Oxford 

Instruments X-MaxN-80T). Relative atomic contents were extracted from the EDS spectra 

using Aztec software package version 3.3. A PXRD pattern were collected from dried CdSe 

nanowire powder on a Zero Background holder using a Bruker D2 Phaser with LYNXEYE 

silicon strip detector. Lithium fluoride (LiF) was mixed into a nanowire powder sample by 

grinding in a mortar for < 30 s to provide reference peaks. Thermogravimetric Analysis 

(TGA) data were collected using a TA Instruments Q5000 with a nitrogen flow rate of 25 

mL min–1 and heating rate of 10 °C min–1. 

2.4 RESULTS AND DISCUSSION 

Bismuth precursor and bismuth nanoparticle synthesis. Bi[N(SiMe3)2]3 was 

synthesized from BiCl3 and Li[N(SiMe3)2] to be used as bismuth precursor for bismuth 

nanoparticle synthesis. The yellow solid product from the synthesis was assumed to be 

Bi[N(SiMe3)2]3 without characterizations and used for bismuth nanoparticle synthesis. 

From Bi[N(SiMe3)2]3, bismuth nanoparticles were synthesized to be used as metal 

nanocatalysts in colloidal CdSe nanowire synthesis. The mechanism of the bismuth 

nanoparticle synthesis is assumed to be a homolytic cleavage of Bi-N bonds in the 

precursor molecule at temperature above 100 C generating elemental bismuth. 

Li[N(SiMe3)2] was added to control the shape of the bismuth nanoparticles; N(SiMe3)2 is 

believed to coordinate to bismuth atoms on the surface of the nanoparticle during the 

growth allowing the spherical shape of bismuth nanoparticle to form. HDA was used as a 

solvent as well as a weakly coordinated ligand to bismuth nanoparticle; strongly 



www.manaraa.com

18 

coordinated ligand, such as oleate induces the formation of bismuth (oleate)3 and thus 

hamper the formation of bismuth nanoparticles. HDA ligand was replaced by oleate ligand 

in a post-synthetic modification step to stabilize the bismuth nanoparticles. Size of the 

bismuth nanoparticles is primarily controlled by the synthetic temperature. A 

representative micrograph of the bismuth nanoparticles taken by Transmission electron 

microscope (TEM) shown in Figure 2.1 indicates that the Bi nanoparticles are spherical. 

The size distribution of the bismuth nanoparticles collected from several TEM images is 

represented by a histogram shown in Figure 2.2. The diameter of Bi nanoparticles ranges 

from 5.8 to 18.1 nm with the average diameter of 10.7 ± 2.2 nm where the uncertainty 

represents sample standard deviation among the nanoparticles measured. 

Colloidal CdSe nanowire synthesis. Colloidal CdSe nanowires were synthesized 

from Cd(oleate)2 and TOPSe catalyzed by bismuth nanoparticles. Cd(oleate)2 was 

generated from CdO and OA around 340C while TOPSe was synthesized from elemental 

selenium and TOP at room temperature. The impurities in TOPO were reported to have an 

effect on the morphology of CdSe nanowires, so high purity TOPO (99%) was used as a 

solvent for the nanowire synthesis. CdSe nanowires were synthesized at 250C at which 

the bismuth nanoparticle melts in the presence of cadmium and selenium.4,27 A 

representative TEM image of the nanowires shown in Figure 2.3 indicates that the 

nanowires have high aspect ratio. The lengths of the nanowires are in micron scale while 

the diameters of the nanowires are in nanometer scale. There is a nanocrystal attached to a 

tip of a nanowire shown in Figure 2.3. This is typical for a nanowire synthesized via SLS 

mechanism because the nanowire is crystalized from the alloy droplet of precursors of the 

nanowire and a metal nanoparticle used as a catalyst in the synthesis. The distribution of 
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the nanowire diameters is represented by a histogram shown in Figure 2.4, which indicates 

the diameters of the nanowires ranging from 7.0 to 82 nm. The average diameter of the 

nanowires is 43 ± 16 nm, where the uncertainty represents sample standard deviation 

among the nanowires measured. which is larger than the average dimeter of the Bi 

nanoparticles. A semiconductor nanowire synthesized via SLS mechanism normally has 

larger radial dimension than that of the metal nanoparticles used as a catalyst for the 

nanowire synthesis because the nanowires are crystalized from alloy droplets of the metal 

nanoparticles and semiconductor precursors, which is larger than the size of the metal 

nanoparticles. EDS spectra collected using TEM equipped with Energy Dispersive X-ray 

spectroscopy (TEM-EDS) detector suggests that the nanowires are selenium-rich; the 

atomic ratio of cadmium to selenium is 47.4 ± 0.5 to 52.6 ± 0.5, where the uncertainties 

represent sample standard deviation among the spots measured. The atomic ratio was 

calculated from K peaks of cadmium and selenium at 23.17 and 11.21 eV as shown in 

Figure 2.5, respectively. The peaks at 0.93 (L), 8.04 (K), and around 9 (K) eV is 

attributed to Cu from the TEM grid. The PXRD pattern of the nanowires shown in Figure 

2.6 matches that of CdSe in wurtzite phase obtained from Inorganic Crystal Structure 

Database (ICSD), confirming the chemical compositions of the CdSe nanowires. The 

PXRD pattern suggests that the crystal structure of CdSe nanowires is primarily wurtzite. 

Even though the PXRD pattern matches wurtzite CdSe, according to the PXRD data from 

ICSD, every peak attributed to zincblende CdSe is very close to peaks attributed to wurtzite 

CdSe in the range of measured 2 angle. Therefore, we cannot rule zincblende out as a 

minor crystal structure in the nanowire crystal. CdSe nanowires synthesized via SLS 

mechanism typically have an admixture of wurtzite and zincblende phases because the 
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nanowire growth is fast and the energy difference between wurtzite and zincblende 

structures is small. TGA measurement conducted on a dried sample of the nanowires 

(Figure 2.7) suggested that there is around 4% of ligands by weight. Excess OA added to 

generate Cd(II) (oleate)2 as a cadmium precursor and excess TOP added to create TOPSe 

as a selenium precursor are potential sources of the ligands. The ligands could also come 

from the oleate and TOP decomposed from the Cd (oleate)2 and the TOPSe during the 

nanowire synthesis. It was reported that TOPO used as a solvent in the synthesis does not 

bind to CdSe quantum dot surfaces. All of these measurements confirm that colloidal CdSe 

nanowires were obtained. 

2.5 CONCLUSIONS 

Bismuth nanoparticles with the average diameter of 10.7 ± 2.2 nm were obtained 

and used as a catalyst for colloidal CdSe nanowire synthesis. Selenium-rich colloidal CdSe 

nanowires with average diameter of 43 ± 16 nm and lengths in microns scale were 

synthesized. These nanowires were used as starting materials for doping reactions that will 

be presented in the next chapters. 
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Figure 2.1 A representative TEM image of Bi nanoparticles. Scale bar is 10 nm. 
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Figure 2.2 Size distribution of the Bi nanoparticles used for colloidal CdSe nanowire 

synthesis.  
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Figure 2.3 A representative TEM image of CdSe nanowires. Scale bar is 200 nm.     
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Figure 2.4 Size distribution of the colloidal CdSe nanowires 
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Figure 2.5 A representative EDS spectrum of the CdSe nanowires. Inset: the TEM image 

of the spot where the EDS spectrum is measured. Scale bar is 1 μm. 
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Figure 2.6 A PXRD pattern of colloidal CdSe nanowires. Stick pattern of wurtzite phase 

of CdSe (red), zincblende phase of CdSe (blue) and LiF are presented for comparison. The 

measurement was conducted on a zero-background stage leading to a shift of peaks 

attributed to CdSe nanowires, thus LiF was added to the CdSe nanowire sample to provide 

reference peaks. 
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Figure 2.7 TGA measurement on the CdSe nanowires 



www.manaraa.com

 

28 

CHAPTER 3 

CONTROLLING MAGNETIC PROPERTY OF CDSE NANOWIRES VIA 

DIFFUSION DOPING OF MANGANESE AND LIGAND EXCHANGE

3.1 INTRODUCTION 

Modern technology utilized fundamental properties of electrons: charge and spin. 

Electronic devices operate base on controlling electron charge while magnetic devices 

operate based on controlling electron spin. These two types of devices are foundation of 

modern technology. One approach to move beyond the efficiency of existing technology 

is to develop a new technology that can harness both electron spin and electron charge 

synergistically, which is a primary goal of spintronics. A dilute magnetic semiconductor 

(DMS) material, prepared by doping a semiconducting material with a proper rare-earth or 

transition metal, a magnetic dopant, at low atomic percentage. This material is a prime 

candidate for spintronic application because they provide a medium in which charge 

carriers from the host semiconductor can interact with spins introduced by the magnetic 

dopant. DMS is an excellent tool to aid in understating fundamental spintronic properties 

that have not been revealed. Not only spintronics, DMS is also a promising material for 

many applications such as, bioimaging and interference information processing.  

Many research studies have been conducted in an effort to prepare DMS in various 

form and compositions. One of most widely used method to prepare DMS is molecular 

beam epitaxy.28 This expensive method is suitable to prepare thin-film DMS, which have 
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a potential to be integrated with well-established thin-film semiconductor technology. 

DMS has also been prepared in other morphologies such as nanocrystals29 and nanorods.30 

As compared to those morphologies, nanowire has higher potential for being integrated 

into electronic devices, which will allow for fabrication of micro-/nanoscale spintronic 

devices as well as fundamental property study of DMS materials in two-dimensional 

confinement structure. There were few studies reported on preparation of DMS nanowires, 

mostly free standing DMS nanowires.3,31 So far, only one study reported on preparation of 

colloidal DMS nanowires.4 The advantageous of colloidal nanowires over free standing 

nanowires are potential for surface functionalization, processability, and scalability. 

Moreover, colloidal nanowires with radial dimension in quantization regime can be 

achieved.4,32 DMS nanowires at this size regime can provide a platform for studying 

interactions of electron charge and spin, and thus allow for possibility of novel fundamental 

physics discovery and novel technology invention. Doping during growth is a primary 

technique used for DMS nanowires preparation via metal nanoparticle mediated methods, 

such as vapor-liquid-solid (VLS) and solution-liquid-solid (SLS). In doping during growth 

technique, a dopant precursor is added into a nanowire growth medium during the growth 

process. The challenge of this approach is the solubility of dopants in nanowire growth 

metal nanoparticle catalyst, which limits type and quantity of dopants that can be 

introduced into semiconductor nanowire crystal. This chapter presents an alternative 

approach, diffusion doping, to introduce a magnetic dopant into a semiconductor nanowire 

crystal. Preparation of Mn(II) doped CdSe nanowires and the effect of the doping on 

magnetic property of the nanowires will be demonstrated. CdSe is a direct bandgap 

semiconductor emitting fluorescence in visible range and has unique optical properties. 
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Mn2+ ion has the highest effective magnetic moment among the first-row transition-

metal ions. Moreover, it has been reported by many studies that Mn(II) doped CdSe is a 

DMS exhibiting ferromagnetic behavior at low temperature.3,4 Additionally, Mn-Se bond 

strength is moderate leading to the versatility to exchange Mn2+ in CdSe lattice with another 

cation. This allows more possibility to control properties of CdSe semiconductor. This 

strategy is demonstrated in the next chapter. 

Introducing Mn(II) ion into CdSe lattices can be challenging due to poor surface 

absorption of Mn(II) ion on Cd-rich CdSe surface, lower bond strength of Mn-Se as 

compared to Cd-Se, and intrinsic self-purification.33 However, it has been reported that 

diffusion doping has been successfully used to dope Mn2+ ion into colloidal CdSe 

nanocrystals in a controlled fashion.11,33 In this approach, an anion precursor, a Se 

precursor, is added to the surface of CdSe nanocrystal to reduce chemical potential of 

Mn(II) ions on the surfaces  and within the crystal of the CdSe nanocrystal as well as 

chemical potential of Cd(II) ions in the CdSe nanocrystal lattice. Consequently, this attracts 

Mn(II) ion to the surfaces of the nanocrystal and prevents Cd(II) ions from leaving the 

nanocrystal lattice. Then heat accelerates the diffusion of Mn(II) ions from the surfaces to 

the core. Diffusion doping can introduce Mn(II) ion into CdSe nanocrystal up to 20 percent 

of Mn(II)/cations ratio which can be controlled by equivalent of a selenium precursor to 

CdSe nanocrystal or reaction time.11,33 This dissertation demonstrates Mn2+ doping in 

colloidal CdSe nanowires in a controlled manner via diffusion doping as a mean to control 

magnetic property of colloidal CdSe nanowires. Additionally, ligands on the Mn(II) doped 

CdSe nanowires was found to have a crucial role in magnetic properties of the nanowires. 
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3.2 EXPERIMENTAL SECTION 

Chemicals. Manganese(II) acetate tetrahydrate (Mn(II)(OAc)2∙4H2O, 99.999%), 

selenium shot (Se, 99.999%), and L-cysteine (≥98%)  were obtained from Alfa Aesar. 1-

Hexadecylamine (HDA, 90%) and 1-octadecene (ODE, 99%) were obtained from ACROS 

ORGANICS. Tri-n-butylphosphine (TBP, 99%) was obtained from STREM 

CHEMICALS. Oleic acid (OA, 99%) was obtained from BEANTOWN CHEMICAL. 

Stearic acid (SA, ≥98.0%) was obtained from TCI America. Acetonitrile (≥99.5%) and 

Chloroform (≥99.8%) were obtained from Sigma-Aldrich. Toluene (99.9%) was obtained 

from Fisher Scientific. 

Preparation of Mn(II) doped CdSe nanowires. Mn(II) doped CdSe nanowires 

were prepared using a modified literature method. Briefly, in a nitrogen atmosphere 

glovebox, 2.13 M TBPSe was prepared by adding 11.4 mL of TBP to 1.727g of selenium 

pellets. The mixture was then stirred at room temperature until the selenium pellets are 

completely dissolved. Separately, 0.8159 g of HDA, 0.4080 g of SA, and 16 mL of ODE 

were loaded into a septum-capped 100 mL round bottom flask, and then heated at 110 ⁰C 

under vacuum for 30 min to dry the mixture. Under nitrogen atmosphere, 26.1 mg of 

Mn(OAc)2·4H2O was then added into the reaction mixture against nitrogen overpressure. 

After that, the reaction mixture was kept under vacuum for 1 h to remove acetic acid and 

water before heating the mixture to 300 ⁰C under nitrogen atmosphere. In the glovebox, 

21.1 mg of CdSe nanowire (20.3 mg of CdSe according to TGA, 0.106 mmol) in 2 mL of 

ODE and 50 μL of 2.13 M TBPSe solution were mixed. The mixture was then injected into 

the reaction mixture. The reaction mixture was kept at 300 ⁰C under nitrogen atmosphere 

for 1 h, 2 h, or 4 h before cooling it down to room temperature; toluene was injected into 
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the reaction mixture at 80 ⁰C to prevent solidification. The reaction mixture was purified 

by precipitation/redissolution technique with chloroform/acetonitrile toluene/acetonitrile 

mixture and pure toluene. The nanowire product was suspended in toluene before further 

characterizations. 

Ligand exchange on Mn(II) doped CdSe nanowires. L-cysteine solution was 

prepared by dissolving 0.8625 g of L-cysteine in 50 mL of PBS buffer (pH = 7.41). 3:2 

(v/v) of a solution of Mn(II) doped CdSe nanowires dispersed in toluene to L-cysteine 

solution was vortex mixed. The complete of the reaction was monitored by phase exchange 

of the nanowires from organic phase to aqueous phase. The nanowires were purified by 

centrifugation and redissolution in DI water for 4 times. The preparation method of Mn(II) 

doped CdSe nanowires for this ligand exchange experiment were modified from the 

method described above by using OA instead of SA with the same equivalent to the CdSe 

nanowires. Additionally, the reaction time for Mn(II) doping reaction was 2 h, 4 h, or 8 h 

instead of 1-4 h as listed above. Finally, the equivalent of the TBPSe to CdSe was increased 

from 1 to 3. 

Physical Characterization. TEM samples were prepared by dropping a dilute 

solution of colloidal suspension of nanowires in toluene or DI water on 200 mesh copper 

grid with a lacey carbon film (Ted Pella, Inc.) and allowing this substrate to dry under 

vacuum. TEM images of ensemble nanowires were obtained on a Hitachi HT7800 TEM, 

100 kV microscope. TEM images of single nanowires were obtained on a JEM-2100 

Electron Microscope. EDS spectra of ensemble nanowires were collected using Hitachi 

HT7800 TEM equipped with a silicon drift detector (Oxford Instruments X-MaxN-80T). 

EDS spectra of single nanowires were collected using a JEOL JEM-2100 electron 



www.manaraa.com

 

33 

microscope equipped with 30 mm2 Si(Li) detector (Oxford Instruments). The relative 

atomic percentages from the EDS spectra are calculated by Inca software package.  PXRD 

data were collected from dried nanowire powders on a Zero Background holder using a 

Bruker D2 Phaser with LYNXEYE silicon strip detector. Lithium fluoride (LiF) was mixed 

into some nanowire powder samples by grinding in a mortar for < 30 s to provide reference 

peaks. X-ray photoelectron spectroscopy measurements were performed using a Kratos 

AXIS Ultra DLD XPS system, with a monochromatic Al Kα source, operated at 15 keV 

and 150W and a hemispherical energy analyzer. The X-rays were incident at an angle of 

45° with respect to the surface normal and analysis was performed at a pressure below 

1x10-9mbar. High resolution core level spectra were measured with a pass energy of 40 eV, 

and survey scans were measured with a pass energy of 160 eV. The analysis of the XPS 

spectra was performed with XPSPEAK 4.1 software. Magnetization data were collected 

on a Quantum Design MPMS 3 SQUID magnetometer. Temperature-dependent 

magnetization data were collected under zero-field-cooled (ZFC) and field-cool-worm 

(fcw) conditions from 2 to 300 K at 100 Oe and M-H loop were collected at 25K. 

3.3 RESULTS AND DISCUSSION 

Preparation of Mn(II) doped CdSe nanowires via nanocrystal diffusion doping 

method. Mn(II) doped CdSe nanowires were prepared from colloidal CdSe nanowires via 

a nanocrystal diffusion doping reaction. In this reaction, TBPSe were added to supply 

selenium to surfaces of the nanowires to reduce chemical potential of Mn2+ on the surface 

as well as the chemical potential of Cd in the nanowire crystals. This chemical potential 

reductions attract Mn2+ ions to the surface of the nanowire and prevent Cd2+ ions from 

leaving the nanowire crystals. Mn(SA)2 were synthesized from Mn(OAc)2·4H2O and SA 
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to be used as a source of Mn2+ ions in the doping reaction. HDA and SA were added as 

ligands coordinated to Mn2+ in the reaction mixture. ODE was used as a solvent. The 

reaction time was used to control the manganese content in the doped nanowires. Aliquots 

from the reaction mixture were collected at 1 h, 2 h, and 4 h, then purified to remove the 

excess precursors, the surfactants, and the high-boiling point solvent. Morphology of the 

doped nanowires was observed via TEM. Figure 3.1 (inset) and 3.2 (inset), are 

representative TEM images of ensemble and single nanowires from the 4-h aliquot sample, 

respectively. The TEM images show that the nanowire morphology is preserved after the 

doping reaction was performed on the CdSe nanowires. This is also true for nanowires 

from the 1-h and the 2-h aliquots. The EDS spectra of the samples were collected using 

TEM-EDS to confirm the presence of a manganese species and determine manganese 

content in the Mn(II) doped CdSe nanowires. Figure 3.1 shows a representative EDS 

spectrum collected from an ensemble of the doped CdSe nanowires from the 4-h aliquot. 

The spectrum shows a peak attributed to a manganese species (K) at 5.89 eV that is not 

present in the EDS spectrum of the CdSe nanowires before doping as shown in Figure 2.5. 

From EDS spectra of Mn(II) doped CdSe nanowire samples collected from the 1-h, 2-h, 

and 4-h aliquots, the manganese atomic percentage of each sample was extracted and 

plotted in Figure 3.3. The manganese atomic percentage in Mn(II) doped CdSe nanowires 

increases with increasing reaction time. Although the manganese percentages from 1-h 

(0.18 ± 0.06) and 2-h (0.20 ± 0.17) samples are not significantly different, those values are 

much smaller than the manganese atomic percentage of the 4-h sample (0.85 ± 0.17). The 

atomic percentage of manganese in these samples are much smaller than that in 

Mn(II)CdSe quantum dots prepared by Vlaskin and coworkers using nanocrystal diffusion 
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doping method.11 There are two main factors causing the small manganese doping level in 

the nanowire samples. First, the ratio of selenium precursor to CdSe used for preparing 

these doped nanowires (1 to 1 ratio) are much smaller than that used by Vlaskin (16 to 1 

ratio). This agrees with the results reported by Barrows and coworkers, which explains the 

effect selenium precursor to CdSe ratio on the doping level.33 Second, the radial dimension 

of the nanowires (43 ± 16 nm) is much larger than that of the quantum dots (4.37 ± 0.18 

nm). The effect of nanocrystal radial dimension on manganese doping level is 

demonstrated here. EDS spectra of a single nanowires allows for investigating a 

relationship between manganese content and radial dimension of the doped nanowires 

collected at different reaction times. Figure 3.4 shows a plot of manganese atomic 

percentage in the doped nanowire as a function of its radial dimension. Assuming that the 

doped nanowires contain manganese, cadmium, and selenium, the manganese atomic 

percentage is calculated from the manganese K peak at 5.89 eV, cadmium K  peak at 

23.17 eV, and selenium K peak at 11.21 eV. The radius of the nanowire is determined 

from corresponding TEM images. The plot indicates that nanowires with smaller diameters 

have higher manganese content at every demonstrated doping time. Moreover, from the 

effect of doping time on manganese atomic percentage of the single nanowires, it is clear 

that the nanowires with similar radial dimension have higher manganese atomic percentage 

at longer doping reaction time indicating that the longer doping reaction time led a larger 

manganese content doped into the nanowires. This result corresponds to the result obtained 

from the ensemble TEM-EDS measurement. The manganese percentage data from the 

single nanowires were compared with diffusion in cylindrical model34 which is explained 

by equation 3.1-3.3.  
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(3.3) 

 

Here, R is the radius of the nanowire, c(r,t) is the manganese concentration within the wire 

at a distance r from the nanowire core (axis) at a time t, and x is the average manganese 

atomic percentage. The initial concentration of manganese in the nanowire, c0, is assumed 

to be 0, cR is the saturated concentration of the manganese in the crystal, and D is the 

diffusion constant. A rough estimate of manganese diffusion constant during the doping 

process is 2  10−4 nm2/s when cR is assumed to be 6% as demonstrated as the manganese 

concentration in Mn(II) doped CdSe quantum dots at equilibrium at corresponding 

equivalent ratio of selenium precursor to CdSe (1:1) at 24 h reaction time reported by 

Barrows and coworkers.33 Particles with high manganese content was also found in the 

doped nanowire samples from all aliquots. Their representative TEM image is shown in 

Figure 3.5. The particles were later confirmed as MnO particles by TEM-EDS and PXRD 

measurements. Figure 3.6 shows PXRD patterns of the 1-h, 2-h, and 4-h Mn(II)CdSe 

nanowire samples as well as a CdSe nanowire sample. The PXRD patterns indicates that 

crystal structure of the doped samples remains the same as that of the CdSe nanowire 

sample. The PXRD patterns suggest that the crystal structure of the doped and intrinsic 



www.manaraa.com

 

37 

nanowires is primarily wurtzite; stacking faults and zincblende phases can potentially be 

present in the samples. The enhancement of (002)w, (111)z, (101)w, (103)w, (112)w, and 

(311)z peaks from the doped sample as compared to the CdSe nanowire sample suggest 

that the doping reaction may be accompanied by a reduction in defects in nanowire crystal, 

which is possibly caused by annealing under the doping temperature (300 C). 

Furthermore, peaks attributed to cubic MnO appear in the PXRD patterns of the doped 

nanowires samples, confirming the present of MnO particle as a contaminant in the doped 

samples. XPS was used to investigate the manganese content on the surficial layer of the 

doped nanowires and the oxidation state of the manganese species in the doped sample. An 

XPS survey scan and high-resolution core level XPS spectra of the doped nanowires from 

the 4-h aliquot shown in Figure 3.7 confirms the present of manganese species in the doped 

nanowire sample. A XPS data of the sample is summarized in Table 3.1. The high-

resolution spectra show peaks attributed by Mn2+ (doublet Mn 2p) at 641.1eV and 652.0 

eV, cadmium species (doublet Cd 3d) at 404.8 and 411.5 eV, and selenium species (doublet 

Se 3d) at 53.5 and 54.2 eV. Assuming that the doped nanowires contain manganese, 

cadmium, and selenium, the manganese atomic percentage is calculated from the 

deconvoluted peaks to be 6.3%, which is higher than the manganese atomic percentage 

obtained from TEM-EDS measurements. There are two possible reasons supporting this 

result. First, XPS measurement probes relative atomic contents on the surface of the 

samples (from the surface to approximately 10 nm beneath the surface). In nanocrystal 

diffusion doping mechanism, a dopant diffuses from surfaces of a nanocrystal creating a 

concentration gradient of the dopants. This results in a higher dopant concentration at the 

surface layers as compared to the core layers in the nanocrystal before the doping process 
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reaches its equilibrium. Mn(II) doped CdSe nanocrystals with 6% of manganese atomic 

percentage can be achieved at equilibrium via nanocrystal diffusion mechanism as mention 

above. The highest concentration of manganese in Mn(II) doped CdSe nanowires reported 

here (2.3% as shown in Figure 3.4) suggests that the doping process does not reach the 

equilibrium point, and thus the dopant concentration gradient is observed via the XPS 

measurements. Another reason causing manganese atomic percentage obtained from the 

XPS measurements to be higher than that from the TEM-EDS measurements is the MnO 

particles contaminated in the doped nanowire samples. The MnO particles were in the TEM 

and PXRD measurements; the signals from the MnO particles were excluded from the data 

obtained from TEM-EDS measurement by selectively detecting an area that does not 

contain MnO particles. A high-resolution XPS spectrum scanning from 631 to 668 eV 

(Figure 3.7 B) shows a deconvoluted peaks attributed by Mn 2p3/2 and 2p1/2 at 641.1 and 

652.0 eV. Mn doped CdSe nanowire prepared by doping during growth method through 

gas phase reported by Chen and coworkers also show the Mn 2p3/2 and Mn 2p1/2 peaks at 

641.5 and 653.8 eV, respectively.3 The difference of the Mn 2p1/2 peak positions is caused 

by the overlapping of Mn 2p1/2 and Cd p1/2 peaks leading to the difficulty in resolving the 

Mn 2p1/2 peak. Nevertheless, the peak positions of Mn 2p3/2 suggests the success of the 

manganese doping reaction by revealing the presence of Mn-Se bond as well as the absent 

of elemental manganese Mn-Mn, which shows Mn 2p at 638.7 eV.35 The results from 

TEM, TEM-EDS, PXRD, and XPS measurements discussed above indicate that 

Mn(II)CdSe nanowires with different manganese contents were successfully prepared from 

colloidal CdSe nanowires via diffusion doping mechanism. 
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The effect of manganese doping on magnetic property of Mn(II) doped CdSe 

nanowires. The doped samples from 2-h and 4-h aliquots show ferromagnetism at low 

temperature (25K) as shown in Figure 3.8. The saturated magnetization per sample mass 

of the doped nanowires increases with increasing doping reaction time, which is 

proportional to the Mn2+ content in the Mn(II) doped CdSe nanowires, suggesting that the 

magnetization per sample mass increases with increasing Mn2+ content in the doped 

nanowires at this low manganese content range. Mn2+, which has 5 unpaired electrons, is a 

source of magnetic moment in the Mn(II)CdSe nanowires. Therefore, increasing Mn2+ 

concentration in the Mn(II)CdSe nanowires would increase number of component with 

magnetic moment in the material, and thus magnetization. Furthermore, temperature-

dependent magnetizations of the doped nanowires from 1-h, 2-h, and 4-h aliquots and CdSe 

nanowire are shown in Figure 3.9. Above a critical temperature called Curie temperature, 

TC, intrinsic magnetic moments arising from magnetic components in a material are 

randomly oriented causing zero net magnetic moment in the material. These distributions 

of intrinsic magnetic moment orientations can be aligned with the direction of external 

magnetic field. Under TC, majority of the intrinsic magnetic moment spontaneously aligned 

in one direction (a major magnetic domain) increasing the net magnetic moment of the 

material. The present of an external magnetic field can increase the size of the magnetic 

domain, and the thus net magnetic moment of the material. The temperature-dependent 

magnetization measurements were conducted in two modes: field cool warm (fcw) and 

zero field cool (zfc). The measurements were started by cooling down the samples with 

(fcw) and without (zfc) applying external magnetic field from room temperature to 2K. 

Then the magnetizations of the samples were collected while the temperature of the sample 
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were increased with applied magnetic field of 100 Oe. In an fcw mode measurement, the 

size of the major magnetic domain of a sample is larger as compared to that from a 

corresponding zfc mode measurement due to the applied external magnetic field during the 

cooling process in fcw mode. Therefore, the fcw mode measurement on each of the doped 

nanowire samples shows higher magnetization as compared to that from zfc mode. The 

samples from 2-h and 4-h aliquots show the same TC of 40K. While the magnetization per 

sample mass of the sample form 4-h aliquot is higher than that from 2-h aliquots. From the 

zfc mode measurements, the samples from 2-h and 4-h aliquots exhibit superparamagnetic 

behavior at low temperature, which is found in nanometer scale ferromagnetic 

materials;3,36–39 below the TC, the values of magnetization per sample mass of those 

samples increase with decreasing temperature to a maximum point at a critical temperature 

called blocking temperature, TB, at 36K, then decrease with decreasing temperature. Below 

TB, the divergence of zfc and fcw curves indicates ferromagnetic behavior of the samples. 

Between TC and TB, the complete overlapping of two curves implies the paramagnetic –

like behavior. These features indicates superparamagnetic behavior of the materials. 

Superparamagnetic behavior was also observed in Mn(II) doped CdSe nanowires prepared 

by doping during growth method.3 The agreement of temperature-dependent magnetization 

features of those nanowires confirms the success of manganese doping via nanocrystal 

diffusion doping presented in this chapter. The values of magnetization per sample mass 

start to rise again at lower temperature (at 26 K for 2-h sample and at 25 K for 4-h sample). 

The increase in the magnetization is possibly caused by paramagnetic contribution from a 

residue of isolated Mn2+ ions present in the samples. Although MnO particle in hexagonal 

phase exhibits paramagnetic behavior at low temperature,40 the MnO particle contaminated 
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in the samples is in cubic phase, which was reported as an antiferromagnetic material,41 

and thus not a source of the increase in magnetization at the low temperature region in the 

zfc mode measurement. It is worth mentioning that Mn2+ at high-spin state has a theoretical 

mass magnetization of 601 emu/g since high-spin Mn2+ has spin-only magnetic moment of 

5.92 B.M/ion (5.49  10−20 emu/ion). 

The effect of ligand exchange on magnetic property of Mn(II) doped CdSe 

nanowires. In an attempt to obtain Mn(II) doped CdSe nanowires without contaminated 

MnO particles, SA was replaced by OA in order to increase the solubility of the nanowires 

in organic solvents. The higher solubility was expected to assist separation between the 

doped nanowires and MnO particles through precipitation/redissolution methods. The 

surfactant replacement did not help to achieve the separation. Additionally, the manganese 

content in these doped nanowires is less as compared to the doped nanowires prepared by 

the reaction using SA as a surfactant even though higher equivalent of TBPSe to CdSe ratio 

was used in the reaction using OA as a surfactant; the higher equivalent of TBPSe to CdSe 

ratio is supposed to increase the manganese content in the nanowires.33 Figure 3.10 shows 

a plot of manganese atomic percentage in the doped nanowires as a function of nanowire 

radius at three doping reaction times. The plot indicates that the manganese content in the 

doped nanowires was saturated since 2 h of doping reaction time. The highest manganese 

content is around 1.6%. Another attempt to remove MnO from the dope nanowires is to 

use a ligand exchange reaction. L-cysteine was used to exchange with the long-chain 

ligands on the doped nanowires because it was reported as a strong ligand to CdSe 

nanocrystal surfaces.42 The L-cysteine-capped doped nanowires was transferred from an 

organic solution to an aqueous solution after the ligand exchange reaction was completed. 
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This ligand exchange reaction was expected to separate the doped nanowires from the MnO 

particles. The ligand exchange reaction was found to have an effect on magnetic properties 

of the doped nanowires as shown in Figure 3.11.  TC and TB of the L-cysteine-capped doped 

nanowires obtained from temperature dependent magnetization measurements in fcw and 

zfc modes at 100 Oe (15 K and 13 K, respectively) are smaller than the TC and TB of the 

doped nanowires at 100 Oe that were not gone through the ligand exchange reaction (40 K 

and 36 K, respectively). It is worth noting that the irreversible temperature, at which the 

magnetizations measured in fcw and zfc start to diverge, of the L-cysteine-capped doped 

nanowires from 2-h, 4-h, and 8-h aliquots are 28, 42, and 44 K, respectively, while the 

irreversible temperature of the nanowire samples without ligand exchange from 1-h, 2-h, 

and 4-h aliquots are 5, 43, and 43 K, respectively. The effect of ligand identity on magnetic 

property was also reported in Mn doped nanocrystal.43 Though the manganese 

concentrations in the doped nanowire samples collected at different doping reaction time 

are not significantly different as shown in Figure 3.10, the magnitude of magnetization per 

sample mass of each samples through entire temperature range measured in both fcw and 

zfc modes in this are different (4h>8h>2h). This might be caused by the annealing effect 

during the doping reaction.  Annealing was reported to change magnetic property of Mn(II) 

doped CdSe quantum dots by arranging the position of the Mn2+ in the doped CdSe 

crystals.37 The PXRD patterns of the doped nanowire samples at various doping duration, 

shown in Figure 3.12, indicate that MnO particles were removed from the Mn(II) CdSe 

nanowires via the ligand exchange reaction. Without MnO particles, the doped nanowire 

samples from 2-h, 4-h, and 8-h aliquots still show the increase in magnetization at low 

temperature starting at 13, 11, and 12 K toward the lower temperatures. This remaining of 
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this features after MnO particles are removed from the samples suggests that this feature 

is caused at least in part by other components that are distinct from the MnO particles. 

 

3.4 CONCLUSIONS 

 The novel method for preparing dilute magnetic semiconductor nanowires was 

demonstrated in this chapter. Mn2+ can be introduced into colloidal CdSe nanowire crystal 

via nanocrystal diffusion doping mechanism in a controlled fashion yielding colloidal 

Mn(II) doped CdSe nanowires exhibiting superparamagnetic behavior at low temperature. 

Moreover, it was demonstrated that the doping content can be controlled by the nanowire 

radial dimension and doping reaction time and a surfactant used in the doping reaction. 

Moreover, the effect of ligand identity on magnetic behavior of Mn(II) doped CdSe 

nanowires was demonstrated. These discoveries provide knowledge that will aid in 

improving doping technology in semiconductor nanowires.
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Table 3.1 Summary of XPS data of the Mn(II) doped CdSe nanowires from 4h aliquot. 

 

Element Peak 

Binding 

Energy (eV)a 

Raw Area 

(CPS)b 

Relative Atomic 

Sensitivityc 

Atomic 

Percentaged 

Mn 

Mn 2p3/2 641.1 

1100.6 2.659 0.88 

Mn 2p1/2 652.0 

Cd 

Cd 3d5/2 404.8 

22247.2 6.623 7.24 

Cd 3d3/2 411.5 

Se 
Se 3d5/2 53.5 

2286.6 0.853 5.77 

Se 3d3/2 54.2 
 

aBinding energy is extracted from Gaussian-Lorentzian fit of the data using XPSPEAK 4.1 

software. 
bRaw peak area is obtained from signal above background using XPSPEAK 4.1 software. 
cRelative atomic sensitivity is provided by XPSPEAK 4.1 software. 
dAtomic percentage is calculated using XPSPEAK 4.1 software. Numbers do not add to 

100% because of contributions from carbon and oxygen signals (not shown). 

 

 
 

Figure 3.1 A representative EDS spectrum of the Mn(II) doped CdSe nanowires from 4h 

aliquot. Inset: the TEM image of the spot where the EDS spectrum is measured.
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Figure 3.2 A representative EDS spectrum of a single Mn(II) doped CdSe nanowires 

collected from 4h aliquot. Inset: the TEM image of the corresponding doped nanowires; 

the circle specifies the spot where the EDS spectrum is measured.  
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Figure 3.3 Manganese atomic percentage of Mn(II) doped CdSe nanowire samples 

collected from the diffusion doping reaction at 1, 2, and 4 hours compared to CdSe 

nanowire sample (0 h). The ammonic percentage data were obtained from TEM-EDS 

measurements of ensemble nanowire samples. The solid lines are guides to the eyes. The 

error bars represent sample standard deviations of the data. 
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Figure 3.4 Mn atomic percentage vs radius of the doped nanowires from 1h (blue circle), 

2h (red circle), and 4h (green circle) aliquots. Solid lines are generated by the diffusion in 

cylindrical model explained in the text to compare the data from 1h (blue), 2h (red), and 

4h (green) aliquot. The black dash line indicates detection limit of the EDS measurement. 

The detection limit was indicated by the detectability of signals to the baseline in the 

corresponding EDS spectra. At atomic percentage below 0.40%, Mn peak in EDS spectrum 

is indistinguishable from background. 
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Figure 3.5 A representative EDS spectrum of a MnO particle contaminated in a doped 

nanowire sample. Inset: the TEM image of the corresponding MnO particle; the circle 

specifies the spot where the EDS spectrum is measured.
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Figure 3.6 PXRD patterns of (a) colloidal CdSe nanowires, (b) Mn(II)CdSe nanowires 

collected from 1h aliquot, (c) Mn(II)CdSe nanowires collected from 2h aliquot, and (d) 

Mn(II)CdSe nanowires collected from 4h aliquot. Stick patterns of wurtzite phase of CdSe 

(red), zincblende phase of CdSe (blue) and cubic MnO (green) are presented for 

comparison. The measurement was conducted on a zero-background stage leading to a 

small shift of the PXRD patterns between samples. To compensate the shift, the PXRD 

pattern of CdSe nanowire sample is adjusted to align to the ICSD 100W peak position, while 

those of Mn(II) doped nanowire samples are shifted to align to ICSD 200cubic (MnO), 

assuming that MnO diffraction angles are the same in all samples.  
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Figure 3.7 XPS spectra of Mn(II) doped  CdSe nanowires from the 4-h aliquot: (A) survey 

scan and (B-D) high resolution core level spectra. Peak deconvolutions in panel B, C, and, 

D show the presence of Mn 2p, Cd 3D, and Se 3D peaks, respectively. 
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Figure 3.8 M-H loops of manganese doped CdSe nanowires from 1h (green dot), 2h 

(orange circle), and 4h (blue square) aliquots measured at 25K. 
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Figure 3.9 Temperature-dependent magnetization in fcw and zfc modes conducted at 100 

Oe of Mn-doped CdSe nanowires from 1h, 2h, and 4h aliquots. 
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Figure 3.10 Mn atomic percentage vs radius of the Mn(II) doped CdSe nanowires prepared 

by replacing SA with OA from 2h (blue circle), 4h (red circle), and 8h (green circle) 

aliquots. The black dash line indicates detection limit of the EDS measurement. The 

detection limit was indicated by the detectability of signals to the baseline in the 

corresponding EDS spectra. At atomic percentage below 0.40%, Mn peak in EDS spectrum 

is indistinguishable from background. 
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Figure 3.11 Temperature-dependent magnetization in fcw and zfc modes conducted at 100 

Oe of L-cysteine-capped Mn(II) doped CdSe nanowires from 2h, 4h, and 8h aliquots. 
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Figure 3.12 PXRD patterns of (a) colloidal CdSe nanowires, (b-d) Mn(II)CdSe nanowires 

after cysteine ligand exchange collected from  (b) 2h aliquot, (c) 4h aliquot, and (d) 8h 

aliquot. Stick patterns of wurtzite phase of CdSe (red), zincblende phase of CdSe (blue), 

cubic phase of MnO (green), and rock salt phase of LiF (black) are presented for 

comparison. The measurement was conducted on a zero-background stage leading to a shift 

of a PXRD pattern, thus LiF was added to the samples to provide reference peaks.
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CHAPTER 4 

CONTROLLING ELECTRONIC PROPERTIES OF CDSE NANOWIRES 

VIA SEQUENTIAL DIFFUSION DOPING OF MANGANESE AND 

CATION EXCHANGE WITH INDIUM

4.1 INTRODUCTION 

Tuning electronic property allows semiconductors to be fundamental materials for many 

applications, such as electronics, photovoltaics, and optoelectronics. For example, to be 

used as a component in electronic device fabrications, charge carriers are introduced into 

intrinsic semiconductors generating p-type or n-type semiconductors. Doping has been 

used as a primary method to control electronic properties of semiconductors by introducing 

charge carriers to the semiconductors. In semiconductor industry, doping is accomplished 

by introducing proper impurity atoms, so called dopants, into a semiconductor crystal. 

Doping technology for bulk semiconductors is mature; diffusion and ion implantation are 

primarily techniques employed for doping in bulk materials.  

In the past two decades, semiconductor nanostructures, e.g. semiconductor 

nanocrystals, have been extensively studied to be employed as components in electronic 

devices due to their potential to provide more compact, more efficient, and more cost-

effective electronic devices. Similar to bulk semiconductors, doping is necessary to enable 

semiconductor nanostructures as electronic device components. However, doping 

techniques used for bulk semiconductor are not suitable for nanoscale semiconductor, such 
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as semiconductor nanocrystals. Several electronic doping techniques has been invented to 

dope semiconductor nanocrystal.44,45 Semiconductor nanowires are one of the most 

extensively studied semiconductor nanocrystals due to their potential for many 

applications.1,2 Several prototype devices for those applications have been achieved.46–48 

Their unique morphology allows for superior advantages in electronic device application 

as compared to other nanostructures such as quantum dots and nanorods as well as 

conventional planar semiconductor electronics. Highly efficient methods to integrate 

nanowire into electronic devices has been demonstrated. Additionally, the nanowire 

structure allows for gate-all-around architectures leading to highly efficient control of 

charge carriers in channels of nanowire field-effect transistors.49 Despite its great potential 

for practical use, the knowledge on semiconductor nanowire doping is limited. CdSe 

nanowire, a direct band gap semiconductor nanowire with fluorescence emission in visible 

range, is a promising candidate for many applications due to its unique characteristics. In 

bulk CdSe, CdSe film, and CdSe quantum dot film, indium have been used to tune their 

properties as an n-type dopant.50–55 In free standing CdSe nanowires, doping during growth 

has been demonstrated to introduce indium to a CdSe crystal creating n-type semiconductor 

nanowire.5 This process was done by introducing an indium precursor to VLS growth 

system of CdSe nanowires. Despite their great potential in being integrated into electronic 

devices, indium doping of colloidal CdSe nanowires has not been achieved. This chapter 

presents a novel approach to doped indium to colloidal CdSe nanowires in a controlled 

fashion and the effect of the doping on electronic property of the nanowires. This approach, 

which is modified from an approach used to introduce indium into CdSe colloidal quantum 

dots, contains two steps.56 First, Mn2+ is doped into CdSe nanowires via nanocrystal 
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diffusion doping method, which is explained in the previous chapter. Then the Mn2+ in the 

doped CdSe nanowires, is replaced with In3+ via cation exchange. By controlling the 

concentration of indium in the In(III) doped CdSe nanowires, the electronic properties of 

the doped nanowires can be tuned.  

4.2 EXPERIMENTAL SECTION 

Chemicals. Manganese(II) acetate tetrahydrate (Mn(II)(OAc)2∙4H2O, 99.999%) 

and selenium shot (Se, 99.999%) were obtained from Alfa Aesar. 1-Hexadecylamine 

(HDA, 90%) and 1-octadecene (ODE, 99%) were obtained from ACROS ORGANICS. 

Tri-n-butylphosphine (TBP, 99%) and indium(III) acetate (In(III)(OAc)3. 99.99%) were 

obtained from STREM CHEMICALS. Oleic acid (OA, 99%) was obtained from 

BEANTOWN CHEMICAL. Stearic acid (SA, ≥98.0%) was obtained from TCI America. 

Acetonitrile (≥99.5%) was obtained from Sigma-Aldrich. Toluene (99.9%) was obtained 

from Fisher Scientific. 

Preparation of In doped CdSe nanowires. InCdSe nanowires were prepared 

using a modified literature method.56 Briefly, in a nitrogen atmosphere glovebox, 2.13 M 

TBPSe was prepared by adding 11.4 mL of TBP to 1.727g of selenium pellets. The mixture 

was then stirred at room temperature until the selenium pellets are completely dissolved. 

In(III)(OA)3 was prepared separately by loading 63 mg In(III)(OAc)3, 0.8808 g of OA and 

6.5 g of ODE into a septum-capped 50 mL round bottom flask. The mixture was then dried 

by heating at 115 ⁰C under vacuum for 1 h. After that, it was heated to 280 ⁰C under nitrogen 

atmosphere until the mixture is clear before cooling the mixture to room. In a nitrogen 

atmosphere glovebox, anhydrous ODE was added into the mixture to the total volume of 

10.0 mL to obtain 21.7 mM In(III)(OA)3. Separately, 0.4672 g of HDA, 0.2348 g of SA, 



www.manaraa.com

 

59 

and 6 mL of ODE were loaded into a septum-capped 50 mL round bottom flask, and then 

heated at 110 ⁰C under vacuum for 30 min to dry the mixture. Under nitrogen atmosphere, 

14.9 mg of Mn(OAc2)·4H2O was then added into the reaction mixture against nitrogen 

overpressure. After that, the reaction mixture was kept under vacuum for 1 h to remove 

acetic acid and water before heating the mixture to 300 ⁰C under nitrogen atmosphere. In 

the glovebox, 11.6 mg of CdSe nanowire (12.1 mg of CdSe according to TGA, 0.0606 

mmol) in 2 mL of ODE and 28 (14, or 55) μL (0.0596 (0.0298, or 1.17) mmol) of 2.13 M 

TBPSe solution were mixed. The mixture was then injected into the reaction mixture. The 

reaction mixture was kept at 300 ⁰C under nitrogen atmosphere for 4 h before injecting 1.4 

mL of 21.7 mM In(III)(OA)3 reducing the reaction temperature to 280 ⁰C. The reaction 

mixture was kept at 280 ⁰C under nitrogen atmosphere for 10 min before cooling it down 

to room temperature; toluene was injected into the reaction mixture at 80 ⁰C to prevent 

solidification. The reaction mixture was purified by precipitation/redissolution technique 

with toluene/acetonitrile mixture and pure toluene. The nanowires product was suspended 

in toluene before further characterizations. 

Electrode fabrication. Devices were fabricated on a heavily p-doped Si wafer with 

285 nm dry thermal oxide obtained from Addison Engineering, Inc. First, the Si wafer was 

rinsed thoroughly with acetone, isopropyl alcohol, and DI water, and then immediately 

dried with a nitrogen stream. The wafer was then heated at 180 ⁰C for 5 min to remove 

water on the SiO2 surface. Metal contacts on the SiO2 surface were defined by 

photolithography and electron-beam evaporation of titanium/gold (30 nm/70 nm) at 3 × 

106 torr. 
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Nanowire FET device fabrication. First, a nanowire solution was prepared by 

mixing a stock solution of nanowires suspended in toluene (1-5 mg/mL) and ODE at a 2:1 

(v/v) ratio. Then the nanowires were deposited to bridge between two metal electrodes via 

dielectrophoretic alignment in a nitrogen atmosphere glovebox; the nanowire solution was 

dropped between the electrodes on the device fabricated by the method explained above 

under a DC electric field (2.5 × 106 V/m) between the electrodes, and then the electric field 

was kept constant for 5 min. After that, the device was rinsed with toluene, and dried by 

wicking the remaining toluene. The device was left in the glovebox at least 10 min before 

electronic measurements. 

Physical Characterization. TEM samples were prepared by dropping a dilute 

solution of colloidal suspension of nanowires in toluene or DI water on 200 mesh copper 

grid with a lacey carbon film (Ted Pella, Inc.) and allowing this substrate to dry under 

vacuum. TEM images of nanowires were obtained on a Hitachi HT7800 TEM, 100 kV 

microscope. EDS spectra of ensemble nanowires were collected using Hitachi HT7800 

TEM equipped with a silicon drift detector (Oxford Instruments X-MaxN-80T). Relative 

atomic concentrations were extracted from the EDS spectra using Aztec software package 

version 3.3 and from an ensemble elemental analysis using Finnigan ELEMENT XR 

double focusing magnetic sector field inductively coupled plasma-mass spectrometer (SF-

ICP-MS) with Rh as internal standards. 0.2 ml/min Micromist U-series nebulizer (GE, 

Australia), quartz torch and injector (Thermo Fisher Scientific, USA) were used for sample 

introduction. The samples analyzed by ICP-MS were prepared by dissolving dried 

nanowire samples in aqua regia at 70⁰C overnight. PXRD data were collected from dried 

nanowire powders on a Zero Background holder using a Bruker D2 Phaser with 
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LYNXEYE silicon strip detector. Lithium fluoride (LiF) was mixed into some nanowire 

powder samples by grinding in a mortar for < 30 s to provide reference peaks X-ray 

photoelectron spectroscopy measurements were performed using a Kratos AXIS Ultra 

DLD XPS system, with a monochromatic Al Kα source, operated at 15 keV and 150W and 

a hemispherical energy analyzer. The X-rays were incident at an angle of 45° with respect 

to the surface normal and analysis was performed at a pressure below 1x10-9mbar. High 

resolution core level spectra were measured with a pass energy of 40 eV, and survey scans 

were measured with a pass energy of 160 eV. The analysis of the XPS spectra was 

performed with XPSPEAK 4.1 software.  Scanning electron microscopy (SEM) images 

were collected directly from nanowire FET devices using Zeiss Ultra plus FESEM.  

Electronic characterization. All measurements were performed in a nitrogen 

glovebox under dark. Transfer characteristics were collected using the following 

instruments. Gate biases were swept linearly at 14.6 V/s using a 2 MHz function generator 

(BK Precision 4010A) while a constant drain voltage was supplied by a DC power supply 

(Keithley 2636A SourceMeter).   Drain current was amplified by a current amplifier (1211 

DL-Instruments) and collected by analog discovery. Gate dependent-IV curves were 

collected by the Keithley 2636A SourceMeter at constant sweeping rate of 2 V/s. 

4.3 RESULTS AND DISCUSSION 

Preparation of In(III) doped CdSe nanowires via sequential nanocrystal 

diffusion doping and cation exchange method. In(III) doped CdSe nanowires were 

prepared using a two-step process. First, Mn(II) doped CdSe nanowires were prepared from 

colloidal CdSe nanowires via the nanocrystal diffusion doping mechanism described in 

chapter 3. Then without purification, the Mn2+ in the Mn(II) doped CdSe nanowires were 
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replaced by In3+ supplied from In(III)(OA)3 to yield In(III) doped CdSe nanowires CdSe 

nanowires via a cation exchange mechanism. Three In(III) doped CdSe nanowire samples 

were prepared by varying the equivalents ratio of TBPSe, a selenium precursor, to CdSe 

nanowires (0.5, 1, and 2) during the first step ,which Mn(II) doped CdSe nanowires were 

generated. An equivalent ratio of a selenium precursor to CdSe quantum dots was reported 

to influence the manganese content in Mn(II) doped CdSe nanowires synthesized via 

nanocrystal diffusion doping mechanism.33 Therefore, it was expected to influence the 

indium content in In(III) doped CdSe nanowires generated from Mn(II) doped CdSe 

nanowires via a cation exchange mechanism. Although the reaction condition in the second 

step can possibly allow for doping indium into the CdSe nanowire crystal via nanocrystal 

diffusion doping mechanism, the reaction time (10 mins) is not sufficient to achieve 

diffusion doping; kinetics of nanocrystal diffusion doping mechanism is very small as 

compared to that of cation exchange mechanism, and thus the introduction of indium to the 

CdSe nanowire crystals was achieved via sequential nanocrystal diffusion doping and 

cation exchange mechanism instead of nanocrystal diffusion doping mechanism. The 

indium doping reaction preserves nanowire morphology; the products from the indium 

doping reactions, regardless of the selenium precursor to CdSe nanowire ratio, retain the 

nanowire morphology of the CdSe nanowires used as starting materials as demonstrated 

by a representative TEM image of indium doped CdSe nanowires in Figure 4.1 (inset). 

EDS spectra of the indium doped CdSe nanowires were collected at several random spots 

on TEM grids containing indium doped CdSe nanowires in order to confirm the presence 

of indium and quantify the indium contents in the indium doped CdSe nanowires. Indium 

(K) peak at 24.21 eV appears in all EDS spectra, as demonstrated in Figure 4.1, indicating 
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the presence of indium species in the indium doped CdSe nanowires. Additionally, 

manganese (K) peak at 5.90 eV is not observed in any EDS spectrum collected from the 

indium doped CdSe nanowire samples indicating the completion of manganese species 

replacement by indium species. An indium atomic percentage in indium doped CdSe 

nanowires was calculated from indium (K) peak at 24.21 eV, cadmium (K) peak at 

23.17 eV, and selenium (K) peak at 11.21 eV. A plot of the indium atomic percentage in 

indium doped CdSe nanowires measured by TEM-EDS and ICP-MS vs. the equivalent 

ratio of a selenium precursor to CdSe is shown in Figure 4.2. The results from both 

measurements indicates that the indium atomic percentage increases with more selenium 

precursor added to the doping reaction. From the TEM-EDS measurements, the atomic 

percentage of indium in the indium doped CdSe nanowire samples prepared with 0.5, 1, 

and 2 equivalent ratios of TBPSe to CdSe are 1.3 ± 0.4, 1.9 ± 0.7, and 3.8 ± 0.8 %, 

respectively, where the uncertainties represent sample standard deviation among the 

random spots measured. The indium atomic percentages are used as labels to the 

corresponding indium doped nanowire samples. PXRD patterns of the CdSe nanowires and 

indium doped CdSe nanowires shown in Figure 3.3 indicates that hexagonal wurtzite is a 

primary crystal structure of both intrinsic and doped nanowires without formation of other 

impurity phases such as those from CdO or MnO. Peak shift to the higher 2 region with 

higher indium concentration is observed (Figure 3.3 inset). The substitution of Cd2+ with 

smaller In3+ ion causes the reduction of lattice constants resulting in the peak shift which 

was also observed in Mn doped CdSe nanowires.4 This also confirms success of the indium 

doping reaction. Additionally, XPS measurements on 3.8 atomic % indium sample were 

conducted in order to determine oxidation state and concentration of In species at surface 
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layers of In(III) doped CdSe nanowires. The data from the measurements is summarized 

in Table 4.1. XPS high-resolution scans of the 3.8 atomic % indium sample shows In 3d 

peaks at 444.8 and 452.3 eV; Cd 3d peaks at 405.0 and 411.8 eV; and Se 3d peaks at 53.9 

eV, respectively (Figure 4.4 B-C). The indium content from the surface layers (from the 

surface to approximately 10 nm below the surface) of the nanowires calculated from the 

area of those peaks is 18 %, which is higher than atomic percentage obtained from TEM-

EDS and ICP-MS measurements determining the atomic percentage from the whole 

structure of the nanowires. This suggests that the dopants were introduced from the surface 

of the nanowires and the doping did not reach a saturation point. A high-resolution scan 

from the XPS measurement in the range of 436 eV to 459 eV shown in Figure 4.4 B 

displays In 3d5/2 peaks at 444.8 eV. This indicates the presence of In-Se bond57 and 

excludes the presence of indium metal in the sample, which would exhibit 3d5/2 peaks 

below 444 eV.58 The TEM, TEM-EDS, ICP-MS, PXRD, and XPS measurements indicates 

the success of the indium doping reaction. 

The effect of indium doping on electronic property of the In(III) doped CdSe 

nanowires. In order to characterize the electronic property of the CdSe nanowires and 

In(III) doped CdSe nanowires, nanowire FET devices were fabricated using lithography 

and dielectrophoretic deposition techniques. First, two metal (Titanium/gold) electrodes 

with a 2-m gap (Figure 4.5 A) were fabricated on SiO2 film (insulator) layer locating on 

top of heavily p-doped silicon wafer (conductor) via metal deposition process through a 

photolithography pattern. To fabricate a nanowire FET device, illustrated by a 

configuration shown in Figure 4.5 B, the intrinsic colloidal CdSe nanowires or In(III) 

doped CdSe nanowires at various doping times were deposited on the electrodes using a 
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dielectrophoretic alignment method. This method has been reported to precisely align 

nanowires on electrodes using electric field between the electrodes supplied from AC or 

DC bias.23,59–63 The method demonstrated here uses DC bias to bridge single nanowires 

between the (Titanium/gold) electrodes to creating a nanowire FET device as illustrated by 

a representative SEM image of In(III) doped CdSe nanowires bridging between two metal 

electrodes in Figure 4.6. Transfer characteristics (drain current (Id) vs. gate bias (Vg)) of 

nanowire FET devices fabricated from the intrinsic CdSe nanowires (d10 and d11) and 

In(III) doped CdSe nanowires (d1-d9) are shown in Figure 4.7. From the transfer 

characteristic, the device exhibiting highest conductivity at 0 gate bias (d8), which is 

fabricated from 3.8% In doped nanowire sample, show the increase in conductivity by 6 

order of magnitude as compared to the device fabricated from the intrinsic CdSe nanowires. 

Additionally, all In(III) doped CdSe nanowire samples show n-type characteristic, which 

is typical for indium doped CdSe. This n-type behavior is confirmed by I-V measurements 

at various gate bias. The representative measurement of from d8 is shown in Figure 4.7. 

All devices fabricated from the doped nanowires exhibit this n-type behavior. Charge 

carrier mobility and charge carrier density of each doped nanowire sample were calculated 

from transconductance (dId/dVg) and threshold voltage (Vth) extracted from the transfer 

characteristic collected by a reverse scan Figure 4.6 (solid lines). The transconductance 

was obtained from a region on a transfer characteristic providing highest slope, and the 

threshold voltage, the gate voltage at which the device starts to shut down, was obtained 

by extrapolating the region where the transconductance was collected to zero drain current 

(Id = 0). The charge carrier mobility and the charge carrier density of each nanowire sample 
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were calculated using charge in cylinders model64 explained by eq. 4.1, and 4.2, 

respectively. 
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where 𝑉𝑑 is drain voltage, F is a ratio of the total width of the device to the width of the 

field of view, L is length of single nanowires, d is diameter of the nanowires, h is the 

thickness of the SiO2 insulating layer (285 nm), 𝜖 is relative permittivity of SiO2 (3.9), 𝜖0 

is vacuum permittivity (8.85 × 10−12 C/V∙m), and e is electron charge (1.60 × 10−19 C). The 

charge carrier mobility and charge carrier density of each doped nanowire sample were 

summarized in Table 4.2. The charge carrier mobility and charge carrier density increase 

with the increasing indium content in the In(III) CdSe nanowires. This agrees with the 

results reported by He and coworkers.5 Furthermore, the doping efficiency of 3.8% In and 

1.9% In sample were calculated to be 0.059 and 0.026 %, respectively, using eq. 4.3 

 

 
𝑑𝑜𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑝𝑎𝑛𝑡𝑠
× 100% 

(4.3) 
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The data from I-V measurements of a representative device (d8) at different gate voltages 

is shown in Figure 4.8. Figure 4.8 A indicates the increase in drain current in the range of 

drained voltage measured with increasing gate voltage. This confirms an n-type behavior 

of the nanowire FET device. The data in log scale (Figure 4.8 B) indicates Schottky contact 

between the metal electrodes and the nanowires bridging between the electrodes. This 

suggests that the nanowires have higher original fermi level as compared to that of the 

metal electrode. 

4.4 CONCLUSIONS 

 In summary, we demonstrate the doping of indium into colloidal CdSe nanowires 

via sequential nanocrystal diffusion doping and cation exchange mechanism for the first 

time. This doping approach allows for controlling indium concentration in the dope 

nanowires, and thus the electronic transport property of the nanowires. The doping 

concentration was simply controlled by the ratio of reactants used in the doping reaction. 

The practical approach for nanowire FET device fabrication from the colloidal doped 

nanowires were demonstrated. The doping increases the conductivity of the nanowires by 

up to 6 order of magnitudes as well as provide carrier concentration as high as 

approximately 1017 cm-3. Controlling electronic property of semiconductors is crucial to 

enable their practical application. This novel doping approach will certainly aid in 

optimizing electronic property of CdSe nanowires for practical use.    
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Table 4.1 Summary of XPS data of the In(III) doped CdSe nanowires from 3.8 atomic % 

indium sample. 

 

Element Peak 

Binding 

Energy (eV)a 

Raw Area 

(CPS)b 

Relative Atomic 

Sensitivityc 

Atomic 

Percentaged 

In 

In 3d5/2 444.8 

3447.3 7.265 2.04 

In 3d3/2 452.3 

Cd 

Cd 3d5/2 405.0 

6993.1 6.623 4.53 

Cd 3d3/2 411.8 

Se Se 3d 53.9 979.6 0.853 4.92 

 

aBinding energy is extracted from Gaussian-Lorentzian fit of the data using XPSPEAK 4.1 

software. 
bRaw peak area is obtained from signal above background using XPSPEAK 4.1 software. 
cRelative atomic sensitivity is provided by XPSPEAK 4.1 software. 
dAtomic percentage is calculated using XPSPEAK 4.1 software. Numbers do not add to 

100% because of contributions from carbon and oxygen signals (not shown). 
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Table 4.2 Summary of data extracted from transfer characteristic measurements. 

 

InCdSe 

sample 
device 

dId/dVg 

(10
-6

C/V∙s) 

Charge carrier 

mobility, 

μe (cm
2
/V∙s) 

μe,avg  a 

(cm
2
/V∙s) 

Vth 

Charger 

carrier density, 

ne (10
17

cm
-3

) 

ne,avg 
a 

(10
17

cm
-3

) 

Doping efficiency, 

charge carrier/dopant 

(%) 

1.3% In 

d4 0.12 0.0107 

0.0179 ± 0.095 

1.17 n/a 

n/a n/a d5 0.14 0.0287 4.50 n/a 

d6 0.041 0.0144 4.39 n/a 

1.9% In 

d1 0.35 0.114 

0.179 ± 0.063 

-1.51 2.43 

1.86 ± 1.25 0.026 d2 0.53 0.183 -3.21 2.74 

d3 0.80 0.240 -0.888 0.43 

3.8 % In 

d7 0.34 0.0721 

0.334 ± 0.278 b 

-4.70 10.40 

8.32 ± 3.30 0.059 d8 3.0 0.531 -2.30 4.52 

d9 1.1 0.138 -7.00 10.00 
 

a Uncertainty represents standard deviation 
b the average value excludes the charge carrier mobility from d7 

Note: charger carrier density values of 1.3% In sample cannot be obtained via this method used for nanowire FET due to the positive 

threshold voltage (Vth).
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Figure 4.1 A representative EDS spectrum of the In(III) doped CdSe nanowires from the 

indium doping reaction using 2 to 1 equivalent ratio of TBPSe to CdSe. Inset: the TEM 

image of the spot where EDS spectrum is measured. Scale bar is 1 μm. 
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Figure 4.2 Indium atomic percentage of In(III) doped CdSe nanowire samples prepared 

from the doping reactions containing selenium precursor at various equivalent ratios of 

TBPSe (selenium precursor) to CdSe obtained from TEM-EDS (red circles) and ICP-MS 

(blue circles) measurements. The solid lines are guides to the eyes. The error bars represent 

sample standard deviations of the data.  
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Figure 4.3 PXRD patterns of (a) colloidal CdSe nanowires, (b) In(III)CdSe nanowires with 

1.3 at. % indium, (c) In(III)CdSe nanowires with 1.9 at. % indium, and (d) In(III)CdSe 

nanowires with 3.8 at. % indium. Stick patterns of wurtzite phase of CdSe (red), zincblende 

phase of CdSe (blue), and LiF (black) are presented for comparison. The measurement was 

conducted on a zero-background stage leading to a shift of a PXRD pattern, thus LiF was 

added to the samples to provide reference peaks. PXRD patterns of the In(III) doped CdSe 

samples were measured with and without mixing LiF into the samples. The PXRD patterns 

of the In(III) doped CdSe samples shown here are measured without LiF, and 

displacements were made to align the patterns to match PXRD patterns of the samples 

measured with LiF added into the samples, so LiF peaks do not show in PXRD of In(III) 

doped CdSe samples. 
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Figure 4.4 XPS spectra of In(III) doped  CdSe nanowires with 3.8 atomic % In: (A) survey 

scan and (B-D) high resolution core level spectra. Peak deconvolutions in panel B, C, and, 

D show the presence of In 3d, Cd 3d, and Se 3d peaks, respectively. 
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Figure 4.5 Nanowire FET device. (A) an SEM image of a top-view of a representative 

nanowire FET device (B) a diagram of nanowire FET device. 
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Figure 4.6 An SEM image of nanowires bridging between metal electrodes of a nanowire 

FET device. 
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Figure 4.7 Comparison of transfer characteristics under dark at Vd = 4 V of nanowire FET 

devices (d) made from In(III)CdSe nanowires with 3.9 at. % indium (blue), In(III)CdSe 

nanowires with 1.8 at. % indium (red), In(III)CdSe nanowires with 1.3 at. % indium 

(green), and CdSe nanowires (black). Panel A and B shows the transfer characteristics in 

linear scale and log scale, respectively. Solid lines represents reverse scans and dash lines 

represents forward scans. Device numbers are labeled as d1-d11.  
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Figure 4.8 Gate-dependent I-V measurements of nanowire FET device d8 under dark: 

(A) in normal scale (B) in log scale. 
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CHAPTER 5 

AN EFFORT TO CONTROL ELECTRONIC PROPERTY OF CDSE 

NANOWIRES VIA PHOTOCHEMICAL DOPING

5.1 INTRODUCTION 

As mention in previous chapters, electronic doping is a crucial step to improve 

electronic properties of semiconductors which enable semiconductors for practical 

applications. Conventionally, electronic doping is done by introducing impurity atoms, so 

called dopants into an intrinsic semiconductor lattice. This approach has been successfully 

used for bulk semiconductors. However, in nanoscale semiconductors, doping via this 

approach is still be immature. It has been limited to semiconductor nanostructures in only 

some compositions and forms. Additionally, semiconductor nanostructure doping via this 

traditional method usually requires complicated procedures. Although there has been a lot 

of improvement in terms of synthetic procedures and electronic device fabrications, 

semiconductor nanowires also have these same problems in doping as other semiconductor 

nanostructures. Alternative method for doping in semiconductor nanowires will certainly 

promote semiconductor nanowires for practical uses in many applications. In 

nanomaterials, including quantum dot12,45,65–69 and graphene.70,71 photochemical doping 

has successfully been used to add delocalized electrons to their conduction bands, which 

can lead to an increase in conductivities of those materials. This process contains two steps 

(Figure 1A). First, materials are illuminated by light exciting electrons from a valence band 
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to a conduction band of a semiconductor, which generates delocalized electrons in the 

conduction band and holes in the valence band. Then electrons are added to the valence 

band at the surface of the material by electron donating molecules. This prevents the 

delocalized electrons from relaxing to the valence band resulting in an n-type 

semiconductor. Though QDs and semiconductor nanowires has similarities in terms of 

morphology (e.g. nanoscale diameter and high surface-to-volume ratio) and chemical 

compositions, this technique has never been used in semiconductor nanowires. This chapter 

demonstrates the potential of photochemical doping as a novel approach to dope 

semiconductor nanowires.  

5.2 PROPOSING EXPERIMENTS 

Probing photochemical doping via spectroscopic techniques.  Colloidal CdSe 

nanowires suspended in toluene/THF solvent with Na[Et3BH], the redox indicator, and 

[Bu4N][PF6] supporting electrolyte to test photochemical doping of CdSe nanowires in 

solution. In particular, a 405-nm LED will be used to excite the sample in a cuvette under 

inert atmosphere, while the UV-vis spectrum (to monitor the redox indicator) will be 

recorded on an orthogonal light path (Figure 5.1). Initially, electrons left in the conduction 

band will transfer to the redox indicator, but as the Fermi level reaches the band edge, both 

will be populated at equilibrium. This is the key observation indicating success. Then 

indicator/nanowire sample will be titrated with ferrocenium to determine the number of 

electrons evolved. By comparison to mass or ICP-MS measurements of the quantity of 

nanowires, n-type carrier density in cm−3 can be estimated. We may also be able to perform 

electrochemical monitoring of the Fermi level. Near-infrared absorbance at the start and 
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end of the photochemical doping step will be used to monitor for signatures of free carriers 

though the resonance due to greater delocalization of carriers in the nanowires. 

Probing photochemical doping via electronic measurement. Nanowire FET 

devices will be fabricated from colloidal CdSe nanowires using the method described in 

chapter 4. The nanowire FET devices will be immersed in a solution of Li[Et3BH] in THF 

under the illumination of a 405-nm LED. After the nanowire FET device is cleaned with 

clean THF and dried, its transfer characteristic will be measured. 

Fabrication of nanowire diode via spatially selective photochemical doping. 

Electrolytes and/or hole scavengers, Li[Et3BH], will be embedded in a polymeric solid or 

gel to facilitate local control and the formation of modulation-doped devices. co-dissolve 

both Li[Et3BH] (or an alternative borohydride) and a supporting electrolyte with a 

compatible polymer and cast the mixture on top of bottom-contacted CdSe nanowires. The 

conductance will be monitored as the electrolyte gate – contacted from the top or with a 

metal side-electrode on the surface of the chip – is swept to locate the threshold voltage for 

n-type conduction. Then, illumination will be provided to stimulate photochemical doping 

and the gate sweep subsequently repeated: the electrolyte gate threshold voltage should 

decrease to a value below zero indicating n-type conduction. If a large enough shift in the 

threshold voltage is observed, then one can envision a scenario where most of the chip is 

brought via the electrolyte gate to p-type conduction, but a selected area of the device, such 

as the channel close to one contact, is photochemical doped into n-type conduction. In this 

case, a p-n junction would be formed along the axis of the nanowire that should display 

rectifying conductivity. This can be explored using a lithographic pattern similar to the one 

in Figure 5.2 where numerous D-S electrode pairs could share the same electrolyte gate, 
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but could be differently photochemically doped using a localized light source. Scanning 

photocurrent microscope  with a continuously-variable field aperture (probe size) that will 

be used to locally photochemically dope at high intensity, and then to identify the p-n 

junction by recording a photocurrent map at reverse bias. Some of these more advanced 

measurements would require a hermetic seal, such as cover glass, to be glued in place over 

the active area of the device so that it could be removed from the glovebox. 

5.3 EXPERIMENTAL SECTION 

 Chemicals. Lithium triethylborohydride (1 M in THF) was obtained from 

BEANTOWN CHEMICAL. Tetrahydrofuran (THF) were dried over activated alumina. 

Electrode fabrication. Devices were fabricated on a heavily p-doped Si wafer with 

285 nm thermally grown SiO2 obtained from Addison Engineering, Inc. First, the Si wafer 

was rinsed thoroughly with acetone, isopropyl alcohol, and DI water, and then immediately 

dried with a nitrogen stream. The wafer was then heated at 180 ⁰C for 5 min to remove 

water on the SiO2 surface. Metal contacts on the SiO2 surface were defined by 

photolithography and electron-beam evaporation of titanium/gold (30 nm/70 nm) at 3 × 

106 torr. 

Nanowire FET device fabrication. First, a nanowire solution was prepared by 

mixing a stock solution of nanowires suspended in toluene (1-5 mg/mL) and ODE at a 2:1 

(v/v) ratio. Then the nanowires were deposited to bridge between two metal electrodes via 

dielectrophoretic alignment in a nitrogen atmosphere glovebox; the nanowire solution was 

dropped between the electrodes on the device fabricated by the method explained above 

under a DC electric field (2.5 × 106 V/m) between the electrodes, and then the electric field 

was kept constant for 5 min. After that, the device was rinsed with toluene, and dried by 
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wicking the remaining toluene. The device was left in the glovebox at least 10 min before 

electronic measurements. 

Electronic characterization. All measurements were performed in a nitrogen 

glovebox under dark. Transfer characteristics were collected using the following 

instruments. Gate biases were swept linearly at 0.18 V/s (intrinsic sample) or 4 V/s (doped 

sample), and a constant drain voltage was supplied by a DC power supply (Keithley 2636A 

SourceMeter). Drain current was also collected by Keithley 2636A SourceMeter. 

Photochemical doping. The following procedures were done in a nitrogen 

glovebox. First, 1 mM Lithium triethylborohydride solution in THF was prepared. 

Nanowire FET device was immersed in the Lithium triethylborohydride solution for 2 min 

under ambient illumination. The nanowire FET device was then rinsed with THF and left 

to dry before it electronic property was measured. 

5.4 PRELIMINARY RESULTS AND DISCUSSION 

 Figure 5.3 indicates the change in electronic transport properties after the 

photochemical doping was performed on the nanowire FET device made of intrinsic NWs.  

The doped nanowires is n-type. Furthermore, transconductance (dId/dVg) is significantly 

increased from 27 pA/V to 630 pA/V after doping indicating that charge carrier mobility 

of the nanowires increases after the doping. Finally, the threshold voltage (Vth) of the 

nanowires reduces from 0.40 to 0.22 V indicating an increase in charge carrier density in 

the nanowires after the doping. The transconductance and threshold voltage were 

calculated using the same method explained in chapter 4. These results suggest that 

photochemical doping can be used to control electronic transport properties of 
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semiconductor NWs, but additional measurements are necessary to confirm and 

characterize the extent and lifetime of photochemical doping that can be achieved. 

5.5 CONCLUSIONS 

This project is significant because it will provide an alternative way to prepare 

colloidal doped semiconductor nanowires needed for application and a semiconductor 

nanowire system having extra free electrons without perturbation by impurities, which is 

needed for a variety of experiments. An alternative way of fabricating nanowire diode will 

also be achieved.
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Figure 5.1 Photochemical doping occurs on excitation of the nanowire due to rapid 

quenching of the hole, leaving an electron in the conduction band. The extra electron can 

equilibrate with a cobaltocenium redox indicator (cross reaction between borohydride and 

cobaltocenium can be tested and is minimal in absence of excitation).
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Figure 5.2 Formation of bottom-contacted nanowire FETs and subsequent photochemical 

doping steps for probing photochemical doping via electronic and fabrication of nanowire 

diode via spatially selective photochemical doping measurements
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Figure 5.3 Comparison of transfer characteristics under dark at Vd = 5 V of nanowire FET 

devices before (blue solid), and after photochemical doping was being performed on the 

nanowires (red solid). 
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